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Abstract

We examine three-dimensional ±J Heisenberg models with and without
random anisotropies in a magnetic field. We calculate both the stiffness
exponent θs at zero temperature and spin-glass correlation lengths for the
longitudinal and transverse spin components at finite temperatures. We suggest
that, contrary to a chirality scenario predicted by Kawamura and his co-workers
(Kawamura 1992 Phys. Rev. Lett. 68 3785, 1998 Phys. Rev. Lett. 80 5421,
Hukushima and Kawamura 2000 Phys. Rev. E 61 R1008), a Gabay–Toulouse
phase transition might occur when the anisotropies are absent, although the
results, except for the correlation length of the chirality for larger sizes, suggest
no phase transition when they are present.

PACS numbers: 75.50.Lk, 05.70.Jk, 75.40.Mg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Phase transitions of three-dimensional (3D) Heisenberg spin glass (SG) models have attracted
much interest in recent years. Two phase-transition scenarios are involved in controversy. One
is the SG scenario, in which a usual SG phase transition takes place at a finite temperature.
However, this scenario has been believed to hold only when anisotropies are present [1]. The
other is a chirality glass (CG) scenario, proposed by Kawamura and his co-workers [2–4].
In the CG scenario, not the spins, but also the local chiralities freeze at a finite temperature.
In this scenario, the SG phase transition never occurs in isotropic SG models. The freezing
of the spins was suggested to occur through coupling of the spins and the local chiralities by
random anisotropies.

Kawamura and his co-workers gave three pieces of evidence of the CG scenario in the
isotropic case: the stiffness exponent for the chiralities is positive θχ > 0, whereas that for
the spins is negative θs < 0 [2]; only the chirality autocorrelation exhibits a pronounced aging
effect at low temperatures [3]; and the chirality overlap distribution P(qχ) exhibits a one-
step-like replica symmetry breaking (RSB) behavior [4]. However, re-examinations of those
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properties revealed different aspects: the stiffness exponent for the spins in a lattice with open
boundaries is positive θs > 0 [5, 6]; the spin autocorrelation of a system, in which a uniform
rotation is removed, exhibits an aging effect similar to that of the chirality autocorrelation [7,
8]; and the SG overlap distribution also exhibits the one-step-like RSB behavior, if we select
the SG order parameter appropriately [9]. Recently, the SG phase transition temperature
TSG and the CG phase transition temperature TCG were estimated using a non-equilibrium
relaxation method [10] and the scaling method of the SG correlation length [11]. Results
suggested that TSG = TCG in both methods. Based on those results, the SG scenario has also
come back into the isotropic models.

The controversy surrounding those two scenarios has reached a new stage. It has been
speculated that true SG properties are visible only in large lattices, e.g., the L × L × L lattice
with L � 20, because the coupling of the spins and the local chiralities, which exists even for
the isotropic model in small lattices, might loosen for L → ∞ [12]. Campos et al recently
studied the model for big lattices (L = 24 and 32) [13] to resolve this issue. Their results
suggest that the lower critical dimension dl of this model is equal to or slightly smaller than
3 (dl � 3) and that a large finite size correction exists in the scaling property of the model
with d = 3. Having taken into account this correction, they also suggested that TSG = TCG.
However, objections exist in relation to their interpretation [14]. Unfortunately, it is too
difficult to resolve this issue herein.

Two scenarios predict different aspects for a finite magnetic field H �= 0. In the SG
scenario, a usual phase transition will take place, which is characterized by a freezing of the
transverse component of the spin, i.e., a Gabay–Toulouse (GT) phase transition [15]. In the
CG scenario, the CG phase transition will occur, but the SG phase transition is absent [17].
More interesting is a case in which anisotropies D are present. Imagawa and Kawamura
predicted that the CG transition still occurs even at D �= 0 because of the one-step RSB [18].

In this paper, we present an examination of the phase transition of the ±J Heisenberg
models with and without random anisotropies at a finite magnetic field H �= 0. Special
attention is devoted to an induced magnetic moment 〈Si〉 at each site i. We consider an SG
spin component, S̃i (≡Si − 〈Si〉), to examine cooperative phenomena of the system. Results
suggest that, in the isotropic model, the ground-state stiffness and the scaling property of
the SG correlation length suggest the presence of the SG (GT-like) phase transition which
might be the KT-type transition similar to those at H = 0 [13]. On the other hand, in the
anisotropic model, both the CG transition and the SG transition might disappear, although
further investigations for larger sizes would be needed to clarify them.

We study the ±J Heisenberg SG models in three dimensions (d = 3) in a magnetic field
H described using the Hamiltonian

H = −
∑
〈ij〉

JijSiSj −
∑
〈ij 〉

∑
μν

D
μν

ij S
μ

i Sν
j − H

∑
i

Sz
i , (1)

where Si is the classical vector spin of |Si | = 1; Jij = +J or −J with the same probability of
1/2. The second term expresses the anisotropic energy; D

μν

ij

(=D
μν

ji = D
νμ

ij

)
(μ, ν = x, y, z)

are symmetric random anisotropic constants uniformly distributed in the range [−D : D]. We
consider two cases: D = 0 and D �= 0.

2. The isotropic case of D = 0

First, we consider the ground-state stiffness of the model using a method proposed by
Matsubara et al [5]. Here we consider lattices of L × L × (L + 1) with open boundaries
for the (L + 1) direction and periodic boundary conditions for the other two directions. The
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Figure 1. Magnetization [Mz] and the transverse component [S⊥] for various lattices L as functions
of H.

Table 1. Parameters of the genetic algorithm (the GAII method) described in [20]. Nsamp is the
number of samples, Np is the number of local populations and Nq is the number of spin quench
steps per spin. These parameters are almost independent of the value of the field H.

L Nsamp Np Nq

4–8 1000 16 100
10 ∼500 64 100
12 ∼50 256 200

lattice has two opposite surfaces �1 and �L+1. We first determine the ground-state spin
configuration

{
Si ≡ S

‖
i +S⊥

i

}
and its energy E0

L. Then, fixing all the spins on the surface �1,
all the spins on the surface �L+1 are rotated by the same angle φ = π/2 around the z-axis and
fixed. Under this boundary condition, we calculate the minimum energy of the system, E

φ

L,
which is always higher than E0

L. The stiffness of the system might be characterized by the
excess energy �EL

(≡E
φ

L − E0
L

)
. The stiffness exponent θs might be defined by the relation

�EL ∝ Lθs .
We have calculated [�EL] of the model up to L = 12, together with the parallel

(the magnetization) and the transverse components of the spins,
[
Mz

(=∣∣∑
i S

‖
i

∣∣/N
)]

and[
S⊥(=∑

i

∣∣S⊥
i

∣∣/N
)]

, in which [· · ·] means a sample average. We have used a genetic
algorithm [19, 20], in particular the GAII method in [20]. Detailed parameters of the method
are given in table 1. The parameter set of (Np,Nq) has been chosen such that the search
ratio defined in [20] becomes greater than 0.90. Figure 1 shows [Mz] and [S⊥] as functions
of H. Those values depend little on L, suggesting that they are those for L → ∞. In fact,
[Mz] exhibits a characteristic property of the SG, i.e., it increases rapidly with H and saturates
gradually at high magnetic fields Hs ∼ 7J . Consequently, [S⊥] has a considerable value up to
Hs . Figure 2 shows [�EL] for several H in a log–log form. Note that scattering of the data of
�EL is not large as compared with that of the conventional defect energy and becomes smaller
as L increases (see also figures 1–3 in [21]). Using least-squares fitting with data for L � 6,
we estimated the stiffness exponent as θs = 0.61±0.02, 0.63±0.03, 0.64±0.02, 0.62±0.06
and −0.18 ± 0.15, respectively, for H/J = 0, 2, 4, 6 and 7. The value of θs ∼ 0.61
for H = 0 is almost the same as θs ∼ 0.62, which was estimated in smaller systems of
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Figure 2. Excess energy [�EL] for various lattices L. The symbols denote, from the above, those
at H/J = 0, 2, 4, 6 and 7. Lines are drawn using least-squares fitting with data for L � 6. The bar
attached to each of the data denotes the standard deviation of the data, not the standard error (the
standard deviation of the sample averaged value).

L � 8 [21]. θs are positive and almost equal for H < Hs . This result is analogous to
that in the spin-flop (SP) phase of an antiferromagnetic Heisenberg (AFH) model, in which
θs = 1 for H < Hs(≡Hc = 12J ). Therefore, we expect that a phase transition occurs
at H � Hc(=6.5 ± 0.5J ), where Hc denotes a critical field at zero temperature. Further
investigations for larger sizes would be needed to confirm these results.

We next examine the phase transition of the model using the Monte Carlo (MC) method.
We consider two replica systems with {Sα

i } and {Sβ

i }. The lattice is a simple cubic lattice of
L × L × (L + 1)(≡N) with skew boundary conditions along two L directions and a periodic
boundary condition along the (L + 1) direction. At H �= 0, the spins are polarized to the
z-direction: mi

(≡〈
Sz

i

〉α = 〈
Sz

i

〉β) �= 0, where 〈· · ·〉 means a thermal average. Magnitudes of mi

will vary from site to site. Figure 3 shows their distribution P(mi). In fact, mi distributes in a
very wide range. The slight size dependence of P(mi) reveals that mi is purely magnetic-field
induced. Then we subtract mi (≡(0, 0,mi)) from the original spin [11]: S̃

α,β

i = S
α,β

i − mi .

Hereafter, we call S̃
α,β

i SG components and consider their cooperative phenomena.
We consider the spin-glass correlation lengths ξ

η

L for the longitudinal (η = ‖) and
transverse (η =⊥) components. We calculate them using a formula [11]:
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Figure 3. Distribution of the site magnetizations mi of the model with D = 0 in a finite magnetic
field. T = 0.25J is slightly higher than TSG(∼0.2J ) at H = 0. The arrow indicates the average
value of mi for L = 13.

ξ
η

L = 1

2 sin (kmin/2)

(
χ̃

η

SG(0)

χ̃
η

SG(kmin)
− 1

)1/2

, (2)

where kmin = (0, 0, 2π/(L + 1)). The k-dependent SG susceptibility is given as χ̃
‖
SG(k) =

N [〈|q̃zz(k)|〉2], and χ̃⊥
SG(k) = N

∑
μ,ν=x,y[〈|q̃μν(k)|〉2], with q̃μν(k) = 1

N

∑
i S̃

αμ

i S̃
βν

i

exp (ik·Ri ). If an SG phase transition occurs, the correlation length divided by the system
size L, ξ

η

L

/
L has the following scaling property:

ξ
η

L

L
= ξ̂ η(L1/ν(T − TSG(H))), (3)

where ν is the correlation length exponent, TSG(H) is the transition temperature at H and ξ̂ η

represents a scaling function.
We performed a simulation of these two replica systems on the lattice with L � 23

having used a temperature exchange MC method [22] with an over-relaxation [13]. We show
the details of the parameters in the MC simulations in table 2. Equilibration is checked by
monitoring the stability of the results against runs at least twice as long. Figures 4(a) and
(c) respectively show ξ⊥

L

/
L and ξ

‖
L

/
L at H = 0.2J as functions of T. These two quantities

exhibit different size dependence. ξ⊥
L

/
L for different L merges around T = 0.22J , suggesting

the presence of the phase transition. This result is compatible with the ground-state study. In
contrast, ξ

‖
L

/
L for larger sizes seems to merge at lower temperatures, which might suggest

the crossover from a weak irreversible state to the strong one in the longitudinal component
similar to that in the mean field model [15].

3. The anisotropic case of D =/ 0

Next we consider the anisotropic model (D = 0.1J ) in a magnetic field (H = 0.2J ).
Imagawa and Kawamura (IK) [18] examined the same model with a smaller value of anisotropy
(D = 0.05J ) and suggested that the CG phase transition occurs because of the one-step-like
RSB. They considered cooperative phenomena of the original spins

{
Sα

i

}
and

{
S

β

i

}
. We have
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Figure 4. Plots of (a) ξ⊥
L /L, (b) ξ

χ
L /L and (c) ξ

‖
L/L of the model with D = 0.

re-examined it3 using SG components
{
S̃α

i

}
and

{
S̃

β

i

}
. Figure 5 shows ξ⊥

L

/
L and ξ

χ

L

/
L as

functions of T, where ξ
χ

L is the correlation length of the local chirality4. In stark contrast to
the case of D = 0, it does not seem that the ξ⊥

L

/
L for different L intersects at any temperature

above 0.16J . On the other hand, ξ
χ

L

/
L for larger sizes merges, similar to the IK results [18],

though the results scatter rather strongly.

3 In this case, the results scatter rather strongly and the equilibration condition is relaxed. Therefore, results for the
former 1/2 MC steps and those for the latter 1/2 MC steps coincide within an error of 1% at D = 0 and 2% at
D = 0.1J .
4 A scalar chiral-overlap qχ between the chiralities of the original spins of the two replicas, {Sα

i } and {Sβ
i }, is given

in [17]. Here we calculate it using the SG components {S̃α
i } and {S̃β

i }.
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Figure 5. Plots of (a) ξ⊥
L /L and (b) ξ

χ
L /L of an anisotropic ±J model with D = 0.1J at

H = 0.2J .

Table 2. Parameters of the MC simulations at D = 0 and D = 0.1J . The over-relaxation sweep
is repeated (L + 1)/2 times per every heat-bath sweep. Nsamp is the number of samples, MCSequil
is the number of MC sweeps for equilibration and MCSmeas is the number of MC sweeps for
measurement. The number of parallel tempering sweeps is equal to the number of heat-bath
sweeps. Tmin and Tmax are the lowest and highest temperatures simulated.

D/J L Nsamp MCSequil MCSmeas Tmin/J Tmax/J

0 7 480 12 000 36 000 0.11 0.30
0 11 480 36 000 108 000 0.11 0.30
0 15 256 72 000 216 000 0.13 0.28
0 19 128 140 000 420 000 0.145 0.26
0 23 128 200 000 600 000 0.20 0.30

0.1 5 480 3 600 10 800 0.16 0.35
0.1 9 480 12 000 36 000 0.16 0.35
0.1 11 288 24 000 72 000 0.16 0.35
0.1 15 128 100 000 300 000 0.16 0.30

Does the CG phase transition occur at D �= 0 and H �= 0? We have also re-examined
the chirality overlap distribution using the SG components

{
S̃α

i

}
and

{
S̃

β

i

}
. Figure 6 shows
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Figure 6. The chiral-overlap distribution functions at T = 0.16J for D = 0.1J at H = 0.2J .
Inset: the case of D = 0 and H = 0.2J .

the chirality overlap distribution of P(qχ) at a low temperature. In marked contrast to the
IK results (see figure 8 in [18]), P(qχ) at T = 0.16J for D = 0.1J exhibits a single peak
at qχ = 0, which becomes sharper as L increases. This result suggests no freezing of the
local chiralities in the anisotropic case. On the other hand, in the isotropic case (D = 0),
P(qχ) shows two-peak structures at low temperatures, similar to the IK results (see the inset of
figure 6).

4. Conclusions

In summary, we have examined the phase transition of the three-dimensional ±J Heisenberg
models at finite magnetic fields H �= 0. When anisotropies are absent, our results suggest
the occurrence of the SG (GT-like) phase transition. Of course, more extensive simulations
for larger sizes would be needed to clarify the property of the phase transition, including the
precise determination of transition temperatures. On the other hand, when they are present,
the distribution of the chiral overlap suggests that a broken symmetry is lacking as soon as
D > 0 for T > 0.16J , contrary to the IK results [18]. In order to get more confirmative
results, further investigations for larger sizes and lower temperatures are strongly desired.
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